Rules for writing mathematics, unit symbols, unit names, and expressing quantities

											ect	Not	rect
	Mathematical constants and explicitly defined functions must be in roman									$\mathrm{e}^{\text {j2 }}$	$\sin x$	$e^{j 2 \pi f t}$	$\sin x$
	Variables must be in italic										$=x^{2}$		x^{2}
	Vectors and matrices are usually in bold italic, lowercase and uppercase resp. (ex: $\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}$ are vectors, \boldsymbol{A} a matrix, β a scalar)									$z=$	$+\beta y$	$z=A$	$+\beta y$
	Symbols used as subscripts and superscripts are in roman if they are descriptive (ex: Bolzmann constant, nth sample of the sequence x)												
	The multiplication of numbers should be denoted with \times, not -										$\times 3$		3
	The multiplication or division of variables should be denoted using one of the following methods : $a b, a b, a \cdot b, a \times b, a / b, \frac{a}{b}, a b^{-1}$												
	A dash must not be used to denote a minus sign										$=-2$	5-7	$=-2$
	Unit symbols must be in roman										dB		$d B$
	Unit symbols are mathematical entities, not abbreviations, thus : - They are not followed by a period, except at the end of a sentence - We must not use the plural - We must not mix unit symbols and unit names within one expression										$\begin{aligned} & \min \\ & \min \\ & N / \mathrm{m}^{2} \end{aligned}$	$\begin{array}{r} 13 \mathrm{n} \\ 17 \mathrm{n} \\ 19 \text { watt } \end{array}$	min. mins s per m
	Multiplication of unit symbols must be indicated by a space or -									W s	r W $\cdot \mathrm{s}$		S
	Division of unit symbols must be indicated by -, / or negative exponents Brackets must be used to remove ambiguities when several / are used										bit/s /h)/Hz		$\begin{aligned} & \text { bps } \\ & \text { h/Hz } \end{aligned}$
	It is not permissible to use abbreviations for unit symbols. The use of the correct symbols for SI units is mandatory									$\begin{aligned} & \hline 31 \mathrm{~s} \\ & 41 \mathrm{~h} \\ & 47 \mathrm{~g} \end{aligned}$	$\begin{gathered} 37 \mathrm{~min} \\ 43 \mathrm{~K} \\ 53^{\circ} \end{gathered}$	$\begin{aligned} & \hline 31 \mathrm{sec} \\ & 41 \mathrm{hr} \\ & 47 \mathrm{gr} \end{aligned}$	$\begin{gathered} \hline 37 \mathrm{mn} \\ 43^{\circ} \mathrm{K} \\ 53 \mathrm{deg} \end{gathered}$
	Unit names must be in roman, and they are treated like ordinary nouns									59	conds	59 se	conds
	Unit names begins with a lower-case letter, even for units named after someone										watts	61 W	Vatts
	When a prefix is used, no space or hyphen is used between the prefix and the unit name, they form a single word									67 m	llivolts	67 mil	i-volts
	There is always a non-breaking space between a number and a unit symbol. The only exceptions are the degree, minute, and second for plane angle (${ }^{\circ}$, ', and ")										$\begin{aligned} & \mathrm{MHz} \\ & 3^{\circ} \mathrm{C} \\ & 9^{\circ} \end{aligned}$		MHz $3^{\circ} \mathrm{C}$ 9°
	When the value of a quantity is used as an adjective, there is a (non-breaking) space between the numerical value and the unit symbol.									a 83	gain	a 83-d	B gain
	The decimal marker shall be either the point or the comma. The choice depends on the context										$\begin{aligned} & \text { (EN) } \\ & \text { (FR) } \end{aligned}$	89,97 89.97	$\begin{aligned} & 7 \text { (EN) } \\ & 7 \text { (FR) } \end{aligned}$
	For numbers with many digits : - The digits may be divided into groups of three by a thin (non-breaking) space - Neither dots nor commas are inserted in the spaces between groups of three - With four digits, it is customary not to use a space to isolate a single digit										$\begin{aligned} & 03107 \\ & 009 \end{aligned}$		$\begin{aligned} & 03,107 \\ & 09 \end{aligned}$
	There is always a (non-breaking) space between a number and the symbol \%										3 \%		\%
$$	Prefix symbols must be in roman, and attached to the unit symbols										km		km
	It is not permissible to use a prefix symbol different than the SI prefix symbols										$\begin{aligned} & \mathrm{kHz} \\ & 7 \mu \mathrm{~s} \end{aligned}$		KHz us
	The SI prefixes refer strictly to powers of 10 . They must not be used to indicate powers of 2. The IEC has adopted prefixes for binary powers in the international standard IEC 60027-2:2005									$\begin{aligned} & 1 \text { kbit }=1000 \text { bits } \\ & 1 \text { Kibit }=1024 \text { bits } \end{aligned}$		1 kbit = 1024 bits	
	Factor	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}	2^{10}	2^{20}	2^{30}	2^{40}	2^{50}	2^{60}
	Name	kilo	mega	giga	tera	peta	exa	kibi	mebi	gebi	tebi	pebi	exbi
	Symbol	k	M	G	T	P	E	Ki	Mi	Gi	Ti	Pi	Ei

Sources : BIPM, http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
NIST, http://physics.nist.gov/cuu/pdf/sp811.pdf
Jérôme Leclère, 2017

